## Engineering Handliook



## Introduction

The Engineering handbook has been prepared to assist the user to better understand the types of equipment used to meter, mix and dispense a wide variety of resin systems. Included are illustrations of the most common types of metering pumps, mixers, dispense valves and feed systems employed. Due to space considerations, not every design or configuration could be included.

Additional machine design considerations including material parameters, useful conversion charts, handy formulas and typical application information are provided to further enhance the user's knowledge of dispensing equipment.

Material for this engineering handbook has been carefully compiled. The handbook utilizes the best and latest available information, and we believe it to be extremely accurate. However, Graco cannot be responsible for errors.

Questions, comments and requests for additional copies of this engineering handbook should be directed to:

Graco Ohio Inc.
8400 Port Jackson Ave. NW
North Canton, OH 44720
Phone (330) 966-3000
Fax (330) 494-5383
Visit www.graco.com for additional machine design configurations, animated illustrations, videos, and electronic calculators.

## Table of Contents

I. Illustrations
a. Metering Pump Technology ..... 2
b. Fixed \& Variable Ratio Designs ..... 10
c. Rotary Pump Flow Diagrams ..... 12
d. Mixer Technology ..... 14
e. Dispense Valve Technology ..... 18
f. Material Feed Systems ..... 26
II. How Materials Affect Equipment Design
a. Viscosity ..... 28
b. Fillers ..... 32
III. Conversions And Formulas
a. Temperature ( ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ ) ..... 36
b. Pressure (psi, bar, kPa) ..... 38
b. Useful Conversion Factors ..... 40
c. Formulas For Geometric Shapes ..... 41
d. Vacuum ..... 42
IV. Application Data And Calculations
a. Power Factor ..... 46
b. Air Cylinder Consumption ..... 47
c. Volumetric Content And Ratios Of Standard Material Hoses ..... 48
d. Volume Of Dots ..... 50
e. Volume Of Beads ..... 52
f. Ratio Of "A" To "B" ..... 54
g. Posiload ${ }^{\star}$ Pump Sizing ..... 55
h. Shot Capability Of Standard Posiload ${ }^{\circledR}$ Piston Pumps ..... 56
i. Gear Pump Select Chart ..... 57
j. Process Capability CP \& CPK ..... 60
V. Abbreviations
a. Common Abbreviations And Symbols ..... 62
VI. Application Glossary ..... 64
a. Automation Terms ..... 65

## Metering Pump Technology

## Posiload ${ }^{\circledR}$ Piston Metering Pump



The piston is fully retracted and material enters the metering tube through the pump inlet.


The piston advances to the entrance of the metering tube and closes it off, acting as an inlet non-return valve.


As the piston travels through the metering tube, the outlet non-return valve opens and material is accurately displaced. The length of metering stroke is adjustable.


To reload the pump, the piston quickly withdraws from the metering tube closing the outlet non-return valve, and creating a vacuum to assist material loading.

Posiload ${ }^{\circledR}$ Rod Metering Pump


The metering rod is fully retracted and material enters the metering tube through the pump inlet.


The metering rod advances to the seal at the entrance of the metering tube and closes it off, acting as an inlet non-return valve.


As the metering rod travels through the metering tube, the outlet non-return valve opens and material is accurately displaced. The length of metering stroke is adjustable.


To reload the pump, the metering rod quickly withdraws from the metering tube, closing the outlet non-return valve, and creating a vacuum to assist material loading.

# Metening Pump Technology <br> Rod Metering Pump 



Side View

To load the valve, the metering rod is retracted to a precisely set position determining the volume of each material. The outlet ports are blocked and material feed inlets are opened. Materials are transferred into the metering chamber by a pressurized feed system.

During the dispense delay, the balanced spool assemblies shift. The material inlets are blocked and the outlet ports are opened. The metering rod remains in the retracted position.


## Conventional Rod Pump



The metering rod is fully retracted and material enters the metering cylinder through the inlet check valve.


The metering rod advances through the metering cylinder accurately displacing material through the outlet check valve.


The metering rod advances to an adjustable length of stroke depending on the shot size desired.


To reload the pump, the metering rod retracts from the metering cylinder closing the outlet check valve and drawing material through the inlet check valve.

## Metering Pump Technology

Front Load Metering Pump


During the dispense delay, the spool assembly shift. The material inlet is blocked and the outlet port is opened. The pump shaft remains in the retracted position.


To load the valve, the pump shaft is retracted to a precisely set position determining the volume of each material. The outlet port is blocked and material feed inlet is opened. Material is transferred into the metering chamber by a pressurized feed system.


Dispensing begins when the pump shaft is driven down. The material is dispensed from the metering chamber to the material outlet and out to a mixing head.

# Metering Pump Technology <br> Progressive Cavity Pump 



Rotor


Progressive Cavity pumps are in the family of screw pumps. They are most effective when used to meter or transfer medium to high viscosity liquids filled with abrasive compounds such as glass beads, glass balloons and metallic or organic fillers, i.e. quartz, aluminum oxide and titanium oxide. Fluid flow starts from the entrance, at the top on the right, to the left as the rotor revolves inside the stator. The stator is a twisted cavity with an oval-shaped cross-section. It is usually made of natural or synthetic rubber, steel, or plastic. The rotor is usually steel. As the rotor turns a series of cavities are continuously formed that progress down the length of stator until discharged. A slight fluid pulse can be detected at low rpms. The progressive cavity pumps can be used for one or both components.

Gear Pumps


The gear teeth carry the material through the pump with the accuracy of volumetric displacement subject to how close tolerance is maintained between the teeth and the inside walls of the pump.


Material is drawn into the pump inlet to be metered by the gear teeth around the inside circumference of the pump.


Metered material is discharged through the pump outlet. Both the size of the pump and the rotational speed determine the volume to be discharged subject to any slippage within the pump.

## Fixed \& Variable Ratio Designs

Fixed Ratio


The volumetric ratio of "A" to " $B$ " is determined by the size of the metering pumps. To change the ratio requires a pump replacement with one of another size.

## Variable Ratio



The volumetric ratio of " $A$ " to " B " is determined by both the size of the metering pumps and where the " B " pump is located along the pivoting beam. The closer the " $B$ " pump is to the pivot point, the shorter its stroke and the wider the ratio of " $A$ " to " $B$ ".

## Compact Variable Ratio



The volumetric ratio of " $A$ " to " B " is determined by both the size of the metering pumps and the length of the stroke of the "B" pump. Both pumps are fixed in position but a ratio control adjustment determines the length of the metering stroke of the " B " pump in relationship to the " $A$ " pump metering stroke.

The " B " pump shaft is connected to a carriage assembly with an adjustable drive beam connector that controls the length of travel of the carriage assembly. This in turn controls the length of stroke of the "B" pump.

By moving the ratio control adjustment toward the pivot point, the shorter the stroke of the " B " pump and the wider the ratio of " $A$ " to " $B$ ". By moving the ratio control adjustment away from the pivot point, the longer the stroke of the "B" pump and the closer the ratio of " $A$ " to " $B$ ".

## Rotary Pump Flow Diagnams <br> Process Flow

Diagram ' $A$ '
 and automated processes. The rotary pumps will start and stop after each dispense command. Each pump output is directed to a pneumatically-operated mix head or to a mix head with springloaded non-drip valves.
 the pumps to a recirculating block and back to the tank. When mix material is demanded, the recirculation block activates and sends the metered streams through individual hoses to a remote mix head.

## Diagram 'C'



This configuration is similar to the diagram ' $B$ '. However, the recirculation block and mix head are one unit, allowing materials to continuously move through the entire system. The mix head can be either motionless or dynamic.


Motionless Mixer


The most common motionless mixer for reactive resin systems features a series of alternating right- and left-hand helical elements oriented at $90^{\circ}$ to one another. These mixers have no moving parts and are available in a wide variety of sizes.

They operate on the principle that the main stream of " A " and " B " components is broken up into minor streams. The materials are divided, reoriented, brought back together, and then the cycle is repeated again and again until the components are thoroughly mixed.

These mixers are available in all-plastic construction for low cost and disposability. Others have removable plastic elements in metal housings, removable metal elements in metal housings and nonremovable metal elements in metal housings. Non-disposable mixers will typically require solvent or base purging to clean them but are reusable.

# Mixing Technology <br> <br> Dynamic Mixer 

 <br> <br> Dynamic Mixer}

These are closed system mixing devices which use high shear to fully mix the " $A$ " and " $B$ " components. A variety of mixer designs are available with the pin/blade and helical design being most common. Various size mix chambers and rotational speeds are offered to accommodate a wide variety of materials and applications. Solvent and air purging are typically used to flush the reactive material from the mix chamber.


Mixed Material Outlet


## Dynamic Disposable Mix Head

The Dynamic Disposable Mix Head is a two component mix head primarily designed to dynamically blend difficult to mix low viscosity reactive chemistries, such as polyurethane elastomers and foams. Each of two metered streams of material is fed to the mix head.


## Dispense Valve Technology <br> Automatic Dispense Valve

This pneumatically actuated valve keeps the "A" and "B" components separate until they are inside the mixer. It has an adjustable snuffback action.


## Dispense Valve Technology

## Over/Under Injection Block

This injection block is typically used when there is a high ratio difference between the " A " and " B " components. It introduces the low volume " B " component into the center of the " $A$ " stream just prior to the motionless mixer. Solvent and air purging are typically used to flush the injection block and mixer.


## High Pressure Impingement Mix Heads

These are closed system mixing devices which use highpressure impingement of the " A " and " B " components and the resultant turbulence to accomplish a thorough mixing. Solvent purging is not required as the mixed material is mechanically purged by a close tolerance rod. A wide variety of sizes are available to handle various flow rate requirements.


# Dispense Valve Technology 

## Snuffer On/Off Dispense Valve

Material flow commences on the forward stroke of the valve spool. When the spool retracts, a vacuum is created and an adjustable, dripless snuff back occurs at the dispense nozzle outlet.


## Needle On/Off Dispense Valve

Material flow commences when the needle retracts from its seat and stops when the needle reseats.


## Pinch On/Off Dispense Valve

Material flow commences when the flexible dispense tubing pinch off is released and stops when the tube is pinched closed.


## Positive Displacement Pinch Valve



## Dispense Delay

During the dispense delay, the top pinch off piston moves forward to stop the material supply from the reservoir and the bottom pinch off piston releases the dispense tube.


## Dispense Mode

The dispense piston then moves forward until stopped by the micrometer stroke adjustment, squeezing a precise amount of material out of the dispense tube. When the dispense cycle is complete, the bottom pinch off piston seals off the dispense tube to prevent material drip. Immediately after, the dispense piston and top pinch off piston withdraw, allowing the material from the pressurized reservoir to refill the dispense tube. The system is again in the normal "ready" state.

# Dispense Valve Technology 

## Positive Displacement Rod Valve With Spool Inlet/Outlet

## Positive Displacement Rod Valve With Check Outlet



## Fill Mode

In the fill mode, the spool is positioned over the inlet port, providing a material flow path from the material supply source to the metering chamber while blocking the outlet port. The metering rod is retracted to an adjustable micrometer hard stop which determines the volumetric output. The metering chamber is filled with material supplied from pressure tanks, cartridges or transfer pumps.

## Dispense Delay

During dispense, the metering rod advances, blocking the material inlet port and pressurizing the metering chamber to overcome the outlet check valve.


## Dispense Mode

Dispense is achieved when the metering rod is advanced through the metering chamber, displacing the material. Upon completion of the travel in the metering chamber, the spool shifts back to the inlet port position, and the metering rod retracts to allow the metering chamber to refill.


## Dispense Mode

Dispense is achieved when the metering rod is advanced through the metering chamber, displacing the material. Upon completion of the metering stroke, the metering rod retracts, allowing the outlet check valve to close and then opening the material inlet port, allowing the metering chamber to refill.

## Fill Mode

In the fill mode, the metering rod is retracted against a calibrated hard stop, providing a material path to the metering chamber while the outlet check valve is held closed by spring tension. The metering chamber is filled with material supplied from pressure tanks, cartridges or syringes.

## Dispense Delay

During dispense, the metering rod advances, blocking the material inlet port and pressurizing the metering chamber to overcome the outlet check valve.

# Material Feed Systems <br> Gravity Feed 



Dual 55 Gallon Drum Feed


## Feed System Options Include:

1. Agitation
2. Heating
3. Vacuum Degassing
4. Recirculation
5. Filters
6. Desiccant Air Dryer
7. Nitrogen Blanket
8. Stainless Steel Construction
9. PTFE Coating
10. Epoxy Coating
11. Follower Plates
12. Pressure Regulators
13. Level Controls
14. Sight Glasses
15. Slinger Plates
16. Support Stands
17. Various Types of Transfer Pumps
18. Single or Double Post Rams


## Viscosity

Viscosity is the measurement of a fluid's internal resistance to flow. This is typically designated in units of centipoise or poise but can be expressed in other acceptable measurements as well. Some conversion factors are as follows:

> 100 Centipoise $=1$ Poise
> 1 Centipoise $=1 \mathrm{mPa} \mathrm{s}$ (Millipascal Second) 1 Poise $=0.1 \mathrm{~Pa}$ s (Pascal Second)
> Centipoise $=$ Centistoke $\times$ Density

Newtonian materials are referred to as true liquids since their viscosity or consistency is not affected by shear such as agitation or pumping at a constant temperature. Water and oils are examples of Newtonian liquids.

Thixotropic materials reduce their viscosity as agitation or pressure is increased at a constant temperature. Ketchup and mayonnaise are examples of thixotropic materials. They appear thick or viscous but actually pump quite easily.

Paste viscosity is a vague term the viscosity of many materials but needs further definition to design a machine. Some paste viscosity materials will seek their own level or flow slowly and the shorter the time it takes, the easier they are to pump. Others do not seek their own level or flow at all and require pressure to move them from the supply container (cartridges, pails or drums) to the metering pump. These materials require special consideration regarding their feeding into metering pumps to assure the metering pump does not cavitate or to prevent air from being introduced into the material.

One way to differentiate between easy and difficult to flow pastes is to obtain Brookfield viscosities using the same spindle at two different rotational speeds, usually a tenfold difference (e.g. 1 RPM and 10 RPM). This will provide a "thixotropic index" for the particular material. The higher the difference in viscosity at the two speeds, the more thixotropic the material is and easier to pump.

To reduce the viscosity of paste materials to allow easier pumping, heat is often applied. The following graph illustrates how a typical filled epoxy resin reduces in viscosity as it is heated.


Solid materials at room temperature that are designed to be melted to allow pumping require heating above their melt point before they become a liquid. Maintaining heat on this material throughout the metering system (feed tank, pump, material supply hose, mixer, etc.) is normally critical to preventing this material from resolidifying somewhere in the system. A heated cabinet that encapsulates all wetted components of the machine is typically employed instead of just heat blanketing the various components.

Typically, the closer the " $A$ " and " $B$ " materials are in viscosity, the easier they will be to mix. The most difficult materials will have a high viscosity "taffy-like" consistency for onecomponent with a water thin viscosity as the other component.

## Approximate Viscosities of Common Materials

(At Room Temperature $70^{\circ} \mathrm{F}$ )

| Material | Viscosity in Centipoise |
| :--- | :--- |
| Water | 1 cps |
| Milk | 3 cps |
| SAE 10 Motor Oil | $85-140 \mathrm{cps}$ |
| SAE 20 Motor Oil | $140-420 \mathrm{cps}$ |
| SAE 30 Motor Oil | $420-650 \mathrm{cps}$ |
| SAE 40 Motor Oil | $650-900 \mathrm{cps}$ |
| Castrol Oil | $1,000 \mathrm{cps}$ |
| Karo Syrup | $5,000 \mathrm{cps}$ |
| Honey | $10,000 \mathrm{cps}$ |
| Chocolate | $25,000 \mathrm{cps}$ |
| Ketchup | $50,000 \mathrm{cps}$ |
| Mustard | $70,000 \mathrm{cps}$ |
| Sour Cream | $100,000 \mathrm{cps}$ |
| Peanut Butter | $250,000 \mathrm{cps}$ |

## Viscosity

## Viscosity Conversion Chart



The viscosities given above are based on materials with a specific gravity of $1 \mathrm{~g} / \mathrm{cc}$.


## Fillers

## The Effect Of Common Fillers On The Construction Of Pumping Equipment

Filler is a general term used to describe an organic, nonmetallic or metallic powder added to resins. They can extend material for cost reduction and/or enhance the material's mechanical properties.

Talc and calcium carbonate are soft fillers commonly used as extensions in materials. These fillers, or ones similar to them, can generally be used in pumping equipment of standard construction (mild steel hard chromed).

Silica and alumina (aluminum oxide) are fillers usually added to materials to enhance mechanical or thermal properties. These types of fillers often require special pump construction of nitrided steel or silicon carbide (ceramic) due to their hardness, physical size and/or shape.

A scale that measures the hardness of a material by its ability to indent or scratch another material was introduced in 1812 by Friedrich Mohs, a German mineralogist. The Mohs' Scale for minerals is arranged in a scale from 1 to 10 , with I being the softest and 10 being the hardest. The Knoop Scale was developed as another method to determine hardness of a greater variety of materials.

Both the Mohs' Scale and the Knoop Scale provide important information concerning hardness of fillers as they relate to various pump materials of construction or other materials.

The charts shown on the next page provide data on various fillers that affect the construction of pumping equipment. For specific recommendations on pump construction for a particular material, contact Graco.

## Filler Hardness Chart

| Material | Commonly Used Filters | Hardness Number |  |
| :---: | :---: | :---: | :---: |
|  |  | Mohs | Knopp |
| Pitch (for optical polishers) | Talc | 1 | 1-22 |
| Gypsum |  | 2 | 32 |
| Calcite | Calcium Carbonate | 3 | 135 |
| Flourite | Aluminum Trihydrate | 4 | 163 |
| Flint Glass |  | --- | 180-390 |
| Apatite (parallel to axis) |  | 5 | 360 |
| Apatite (perpendicular to axis) |  | 5 | 430 |
| Crown Glass |  | --- | 420-470 |
| Fused Quartz |  | --- | 475 |
| Albite |  | 6 | 490 |
| Orthoclase |  | 6 | 560 |
| Crystalline quartz (parallel to axis) |  | 7 | 710 |
| Crystalline quartz (perpendicular to axis) | Silica | 7 | 790 |
| Nitrided annealed high-speed steel |  | --- | 800 |
| Chromium plate |  | --- | 850-900 |
| Carboloy |  | --- | 1,050 |
| Nitrided hardened high-speed steel |  | --- | 1,100 |
| Topaz |  | 8 | 1,250 |
| Alundum | Alumina (Aluminum Oxide) | 9 | 1,635 |
| Silicon carbide |  | --- | 2,000 |
| Boron carbide (molded) |  | --- | 2,230 |
| Diamond |  | 10 | 8000-8500 |

## Fillers

## Particle Size Chart



1 Micron $=0.001 \mathrm{MM}$
$1 \mathrm{MM}=0.394$ Inches

## Conversions and Formulas

## Temperature Conversion Chart

This chart permits the conversion from degrees Celsius to degrees
Fahrenheit or vice versa. Simply locate in bold face the number to be converted and read its conversion in the columns to the right or left of it. Degrees Celsius are identical to degrees Centigrade. The following formulas are used to calculate the conversions:

Fahrenheit to Celsius
$\mathrm{Tc}=\frac{5}{9}(\mathrm{Tf}-32)$
Celsius to Fahrenheit
$\mathrm{Tf}=\left(\frac{9}{5}\right) \mathrm{Tc}+32$
$\mathrm{Tc}=$ Temperature in Celsius $\mathrm{Tf}=$ Temperature in Fahrenheit

| TO CONVERT |  |  |
| :---: | :---: | :---: |
| T0 ${ }^{\circ} \mathrm{C}$ | $\leftarrow{ }^{\circ}{ }^{\circ}$ or ${ }^{\circ} \mathrm{C} \rightarrow$ | T0 ${ }^{\circ} \mathrm{F}$ |
| -17.78 | 0 | 32 |
| -17.22 | 1 | 33.8 |
| -16.67 | 2 | 35.6 |
| -16.11 | 3 | 37.4 |
| -15.56 | 4 | 39.2 |
| -15.00 | 5 | 41 |
| -14.44 | 6 | 42.8 |
| -13.89 | 7 | 44.6 |
| -13.33 | 8 | 46.4 |
| -12.78 | 9 | 48.2 |
| -12.22 | 10 | 50 |
| -11.67 | 11 | 51.8 |
| -11.11 | 12 | 53.6 |
| -10.56 | 13 | 55.4 |
| -10.00 | 14 | 57.2 |
| -9.44 | 15 | 59 |
| -8.89 | 16 | 60.8 |
| -8.33 | 17 | 62.6 |
| -7.78 | 18 | 64.4 |
| -7.22 | 19 | 66.2 |
| -6.67 | 20 | 68 |
| -6.11 | 21 | 69.8 |
| -5.56 | 22 | 71.6 |
| -5.00 | 23 | 73.4 |
| -4.44 | 24 | 75.2 |
| -3.89 | 25 | 77 |
| -3.33 | 26 | 78.8 |
| -2.78 | 27 | 80.6 |
| -2.22 | 28 | 82.4 |
| -1.67 | 29 | 84.2 |
| -1.11 | 30 | 86 |
| -0.56 | 31 | 87.8 |
| 0.00 | 32 | 89.6 |
| 0.56 | 33 | 91.4 |
| 1.11 | 34 | 93.2 |
| 1.67 | 35 | 95 |
| 2.22 | 36 | 96.8 |
| 2.78 | 37 | 98.6 |
| 3.33 | 38 | 100.4 |
| 3.89 | 39 | 102.2 |
| 4.44 | 40 | 104 |
| 5.00 | 41 | 105.8 |
| 5.56 | 42 | 107.6 |
| 6.11 | 43 | 109.4 |
| 6.67 | 44 | 111.2 |
| 7.22 | 45 | 113 |
| 7.78 | 46 | 114.8 |


| TO CONVERT |  |  |
| :---: | :---: | :---: |
| To ${ }^{\circ} \mathrm{C}$ | $\leftarrow{ }^{\circ}{ }^{\circ}$ or ${ }^{\circ} \mathrm{C} \rightarrow$ | To ${ }^{\circ} \mathrm{F}$ |
| 8.33 | 47 | 116.6 |
| 8.89 | 48 | 118.4 |
| 9.44 | 49 | 120.2 |
| 10.00 | 50 | 122.0 |
| 10.56 | 51 | 123.8 |
| 11.11 | 52 | 125.6 |
| 11.67 | 53 | 127.4 |
| 12.22 | 54 | 129.2 |
| 12.78 | 55 | 131.0 |
| 13.33 | 56 | 132.8 |
| 13.89 | 57 | 134.6 |
| 14.44 | 58 | 136.4 |
| 15.00 | 59 | 138.2 |
| 15.56 | 60 | 140.0 |
| 16.11 | 61 | 141.8 |
| 16.67 | 62 | 143.6 |
| 17.22 | 63 | 145.4 |
| 17.78 | 64 | 147.2 |
| 18.33 | 65 | 149.0 |
| 18.89 | 66 | 150.8 |
| 19.44 | 67 | 152.6 |
| 20.00 | 68 | 154.4 |
| 20.56 | 69 | 156.2 |
| 21.11 | 70 | 158.0 |
| 21.67 | 71 | 159.8 |
| 22.22 | 72 | 161.6 |
| 22.78 | 73 | 163.4 |
| 23.33 | 74 | 165.2 |
| 23.89 | 75 | 167.0 |
| 24.44 | 76 | 168.8 |
| 25.00 | 77 | 170.6 |
| 25.56 | 78 | 172.4 |
| 26.11 | 79 | 174.2 |
| 26.67 | 80 | 176.0 |
| 27.22 | 81 | 177.8 |
| 27.78 | 82 | 179.6 |
| 28.33 | 83 | 181.4 |
| 28.89 | 84 | 183.2 |
| 29.44 | 85 | 185.0 |
| 30.00 | 86 | 186.8 |
| 30.56 | 87 | 188.6 |
| 31.11 | 88 | 190.4 |
| 31.67 | 89 | 192.2 |
| 32.22 | 90 | 194.0 |
| 32.78 | 91 | 195.8 |
| 33.33 | 92 | 197.6 |
| 33.89 | 93 | 199.4 |


| TO CONVERT |  |  |
| :---: | :---: | :---: |
| To ${ }^{\circ} \mathrm{C}$ | $\leftarrow{ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C} \rightarrow$ | To ${ }^{\circ} \mathrm{F}$ |
| 34.44 | 94 | 201.2 |
| 35.00 | 95 | 203.0 |
| 35.56 | 96 | 204.8 |
| 36.11 | 97 | 206.6 |
| 36.67 | 98 | 208.4 |
| 37.22 | 99 | 210.2 |
| 37.78 | 100 | 212.0 |
| 43.33 | 110 | 230.0 |
| 48.89 | 120 | 248.0 |
| 54.44 | 130 | 266.0 |
| 60.00 | 140 | 284.0 |
| 65.56 | 150 | 302.0 |
| 71.11 | 160 | 320.0 |
| 76.67 | 170 | 338.0 |
| 82.22 | 180 | 356.0 |
| 87.78 | 190 | 374.0 |
| 93.33 | 200 | 392.0 |
| 98.89 | 210 | 410.0 |
| 104.44 | 220 | 428.0 |
| 110.00 | 230 | 446.0 |
| 115.56 | 240 | 464.0 |
| 121.11 | 250 | 482.0 |
| 126.67 | 260 | 500.0 |
| 132.22 | 570 | 518.0 |
| 137.78 | 280 | 536.0 |
| 143.33 | 290 | 554.0 |
| 148.89 | 300 | 572.0 |
| 154.44 | 310 | 590.0 |
| 160.00 | 320 | 608.0 |
| 165.56 | 330 | 626.0 |
| 171.11 | 340 | 644.0 |
| 176.67 | 350 | 662.0 |
| 182.22 | 360 | 680.0 |
| 187.78 | 370 | 698.0 |
| 193.33 | 380 | 716.0 |
| 198.89 | 390 | 734.0 |
| 204.44 | 400 | 752.0 |
| 210.00 | 410 | 770.0 |
| 215.56 | 420 | 788.0 |
| 221.11 | 430 | 806.0 |
| 226.67 | 440 | 824.0 |
| 232.22 | 450 | 842.0 |
| 237.78 | 460 | 860.0 |
| 243.33 | 470 | 878.0 |
| 248.89 | 480 | 896.0 |
| 254.44 | 490 | 914.0 |
| 260.00 | 500 | 932.0 |

## Conversions and Formulas

## Pressure Conversion Chart

| TO CONVERT |  |  |
| :---: | :---: | :---: |
| To psi | bar or psi | To bar |
| 14.504 | 1 | 0.069 |
| 29.008 | 2 | 0.138 |
| 43.511 | 3 | 0.207 |
| 58.015 | 4 | 0.276 |
| 72.519 | 5 | 0.345 |
| 87.023 | 6 | 0.414 |
| 101.526 | 7 | 0.483 |
| 116.030 | 8 | 0.552 |
| 130.534 | 9 | 0.621 |
| 145.038 | 10 | 0.689 |
| 217.557 | 15 | 1.034 |
| 290.075 | 20 | 1.379 |
| 362.594 | 25 | 1.724 |
| 435.113 | 30 | 2.068 |
| 507.632 | 35 | 2.413 |
| 580.151 | 40 | 2.758 |
| 652.670 | 45 | 3.103 |
| 725.189 | 50 | 3.447 |
| 1,450.377 | 100 | 6.895 |
| 2,175.566 | 150 | 10.342 |
| 2,900.754 | 200 | 13.790 |
| 3,625.943 | 250 | 17.237 |
| 4,351.131 | 300 | 20.684 |
| 5,076.320 | 350 | 24.132 |
| 5,801.508 | 400 | 27.579 |
| 6,526.697 | 450 | 31.026 |
| 7,251.885 | 500 | 34.474 |
| 7,977.074 | 550 | 37.921 |
| 14,503.770 | 1,000 | 68.948 |


| TO CONVERT |  |  | TO CONVERT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To bar | kPa or bar | To kPa | To psi | kPa or psi | To kPa |
| 0.010 | 1 | 100 | 0.145 | 1 | 6.90 |
| 0.020 | 2 | 200 | 0.290 | 2 | 13.79 |
| 0.030 | 3 | 300 | 0.435 | 3 | 20.68 |
| 0.040 | 4 | 400 | 0.580 | 4 | 27.58 |
| 0.050 | 5 | 500 | 0.725 | 5 | 34.47 |
| 0.060 | 6 | 600 | 0.870 | 6 | 41.37 |
| 0.070 | 7 | 700 | 1.015 | 7 | 48.26 |
| 0.080 | 8 | 800 | 1.160 | 8 | 55.16 |
| 0.090 | 9 | 900 | 1.305 | 9 | 62.05 |
| 0.100 | 10 | 1,000 | 1.450 | 10 | 68.95 |
| 0.150 | 15 | 1,500 | 2.176 | 15 | 103.42 |
| 0.200 | 20 | 2,000 | 2.901 | 20 | 137.90 |
| 0.250 | 25 | 2,500 | 3.626 | 25 | 172.37 |
| 0.300 | 30 | 3,000 | 4.351 | 30 | 206.84 |
| 0.350 | 35 | 3,500 | 5.076 | 35 | 241.32 |
| 0.400 | 40 | 4,000 | 5.802 | 40 | 275.79 |
| 0.450 | 45 | 4,500 | 6.527 | 45 | 310.26 |
| 0.500 | 50 | 5,000 | 7.252 | 50 | 344.734 |
| 1.000 | 100 | 10,000 | 14.504 | 100 | 689.48 |
| 1.500 | 150 | 15,000 | 21.756 | 150 | 1,034.21 |
| 2.000 | 200 | 20,000 | 29.008 | 200 | 1,378.95 |
| 2.500 | 250 | 25,000 | 36.259 | 250 | 1,723.69 |
| 3.000 | 300 | 30,000 | 43.511 | 300 | 2,068.43 |
| 3.500 | 350 | 35,000 | 50.763 | 350 | 2,413.17 |
| 4.000 | 400 | 40,000 | 58.015 | 400 | 2,757.90 |
| 4.500 | 450 | 45,000 | 65.267 | 450 | 3,102.64 |
| 5.000 | 500 | 50,000 | 72.519 | 500 | 3,447.38 |
| 5.500 | 550 | 55,000 | 79.771 | 550 | 3,792.12 |
| 10.000 | 1,000 | 100,000 | 145.038 | 1,000 | 6,894.76 |

## Conversions and Formulas

## Useful Conversion Factors

## Geometric Formulas

## Volume

| 1 Fluid Ounce | $=29.57$ Cubic Centimeters |
| :--- | :--- |
| 1 Gallon | $=3785$ Cubic Centimeters |
| 1 Gallon | $=3.785$ Liters |
| 1 Gallon | $=128$ Fluid Ounces |
| 1 Gallon | $=4$ Quarts |
| 1 Gallon | $=8$ Pints |
| 1 Gallon | $=16$ Cups |
| 1 Gallon | $=231$ Cubic Inches |
| 1 Gallon | $=0.134$ Cubic Feet |
| 1 Liter | $=0.264$ Gallons |
| 1 Liter | $=1.06$ Quarts |
| 1 Liter | $=1000$ Milliliters |
| 1 Cubic Foot | $=1728$ Cubic Inches |
| 1 Cubic Foot | $=7.48$ Gallons |
| 1 Cubic Inch | $=16.387$ Cubic Centimeters |
| 1 Cubic Centimeter | $=1$ Milliliter |
| 1 Microliter | $=0.001$ cc's |
| 1 Nanoliter | $=0.000001$ cc's |

## Weight

| 1 Kilogram | $=1000$ Grams |
| :--- | :--- |
| 1 Kilogram | $=2.2$ Pounds |
| 1 Pound | $=16$ Ounces |
| 1 Pound | $=453.6$ Grams |
| 1 Pound | $=7000$ Grains |
| 1 Ounce | $=28.35$ Grams |



Circle


Sphere


Cylinder


Rectangle or Square

Area $=\pi r^{2}$ or $\pi D^{2} \div 4$
Circumference $=\pi D$ or $2 \pi r$
( $r=$ radius, $D=$ diameter, $\pi=3.1416$ )

Surface $=4 \pi r^{2}$ or $\pi D^{2}$
Volume $=D^{3} \times 0.5236$

Volume $=\pi r^{2} h$
( $\mathrm{h}=$ height)

Area $=L \times h$
( $\mathrm{L}=$ Length $)$


Volume $=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$
( $\mathrm{W}=$ Width)

## Vacuum

## Vacuum Pump Sizing

To determine the vacuum pump size which is designated in cubic feet per minute (CFM), the following information is needed:
$V=$ The volume of the tank(s) or vacuum chamber in cubic feet
$T=$ The time required to achieve a specific vacuum level in minutes
$F=A$ pump down factor for the specific vacuum pump which relates to the vacuum level required for the process

The formula for determining the vacuum pump size(s) is as follows: $\quad S=\frac{V \times F}{T}$

To determine the volume of standard tanks provided by Graco, refer to the following chart.

| Tank Size | Volume |
| :---: | :---: |
| 3 Liter | 0.11 cubic feet |
| 5 Liter | 0.18 cubic feet |
| 2 Gallon | 0.27 cubic feet |
| 5 Gallon | 0.67 cubic feet |
| 10 Gallon | 1.34 cubic feet |
| 15 Gallon | 2.0 cubic feet |
| 30 Gallon | 4.0 cubic feet |
| 60 Gallon | 8.0 cubic feet |

To determine the pump down factor, locate the desired vacuum level on the vertical axis. Then find where this intersects on the curve(s) and go straight down to the horizontal axis to find the pump down factor ( F ).


## Vacuum Conversion Examples

1. What size vacuum pump is required for degassing a 30 gallon tank of material at a vacuum level of 10 Torr with the time required to achieve that vacuum level in the tank being 2 minutes?

$$
\begin{aligned}
& S=\frac{V \times F}{T} \\
& S=\frac{4.0 \times 5}{2} \\
& S=\mathbf{1 0} \mathbf{C F M} \text { (minimum vacuum pump size) }
\end{aligned}
$$

Note: The time required to thoroughly degas the material is dependent on the amount of air in the material, the viscosity of the material, the design of the agitation and/or recirculation system, and many other variables. The pump sizing above only considers the time required to achieve a certain vacuum level.
2. How long will it take for a 6 CFM vacuum pump to achieve a 1 Torr vacuum level in a 5 gallon tank?

$$
\begin{aligned}
& S=\frac{V \times F}{T} \quad \text { or } \quad \frac{T=V \times F}{S} \\
& T=\frac{0.67 \times 7}{6}
\end{aligned}
$$

## $\mathrm{T}=\mathbf{0 . 7 8}$ minutes

Note: This assumes no vacuum leaks in the tank.
3. What size vacuum pump is required for achieving a 1 Torr vacuum level within 1 minute in a 2'x $2^{\prime} \times 2$ ' vacuum chamber?

$$
S=\frac{V \times F}{T}
$$

$S=\frac{8 \times 7}{1}$
$S=\mathbf{5 6} \mathbf{C F M}$ (minimum vacuum pump size)

## Vacuum

## Vacuum Conversion Table

| Torr or MM Mercury | Micron | PSI |
| :---: | :---: | :---: |
| 760.0 | 760,000 | 14.7 |
| 750.0 | 750,000 | 14.5 |
| 735.6 | 735,600 | 14.2 |
| 700.0 | 700,000 | 13.5 |
| 600.0 | 600,000 | 11.6 |
| 500.0 | 500,000 | 9.7 |
| 400.0 | 400,000 | 7.7 |
| 380.0 | 380,000 | 7.3 |
| 300.0 | 300,000 | 5.8 |
| 200.0 | 200,000 | 3.9 |
| 100.0 | 100,000 | 1.93 |
| 90.0 | 90,000 | 1.74 |
| 80.0 | 80,000 | 1.55 |
| 70.0 | 70,000 | 1.35 |
| 60.0 | 60,000 | 1.16 |
| 51.7 | 51,700 | 1.00 |
| 50.0 | 50,000 | 0.97 |
| 40.0 | 40,000 | 0.77 |
| 30.0 | 30,000 | 0.58 |
| 25.4 | 25,400 | 0.4912 |
| 20.0 | 20,000 | 0.39 |
| 10.0 | 10,000 | 0.193 |
| 7.6 | 7,600 | 0.147 |
| 1.0 | 1,000 | 0.01934 |
| 0.75 | 750 | 0.0145 |
| 0.1 | 100 | 0.00193 |
| 0.01 | 10 | 0.000193 |
| 0.00 | 0 | 0 |


| Inches Mercury Absolute | Inches Mercury Gauge | $\begin{gathered} \% \\ \text { Vacuum } \end{gathered}$ |
| :---: | :---: | :---: |
| 29.92 | 0.0 | 0.0 |
| 29.5 | 0.42 | 1.3 |
| 28.9 | 1.02 | 1.9 |
| 27.6 | 2.32 | 7.9 |
| 23.6 | 6.32 | 21.0 |
| 19.7 | 10.22 | 34.0 |
| 15.7 | 14.22 | 47.0 |
| 15.0 | 14.92 | 50.0 |
| 11.8 | 18.12 | 61.0 |
| 7.85 | 22.07 | 74.0 |
| 3.94 | 25.98 | 87.0 |
| 3.54 | 26.38 | 88.0 |
| 3.15 | 26.77 | 89.5 |
| 2.76 | 27.16 | 90.8 |
| 2.36 | 27.56 | 92.1 |
| 2.03 | 27.89 | 93.0 |
| 1.97 | 27.95 | 93.5 |
| 1.57 | 28.35 | 94.8 |
| 1.18 | 28.74 | 96.1 |
| 1.00 | 28.92 | 96.6 |
| 0.785 | 29.14 | 97.4 |
| 0.394 | 29.53 | 98.7 |
| 0.299 | 29.62 | 99.0 |
| 0.03937 | 29.88 | 99.9 |
| 0.0295 | 29.89 | 99.9 |
| 0.00394 | 29.916 | 99.99 |
| 0.000394 | 29.9196 | 99.999 |
| 0 | 29.920 | 100.0 |

# Application Data and Calculations 

## Power Factor (Intensification)

For air or hydraulically driven pumps, the power or intensification factor is determined by the drive piston(s) area divided by the fluid piston(s) area. This basically determines the output pressure and cycle rate capability of the pumping unit. The formula for calculating power factor is as follows:

$$
\text { Power Factor }=\frac{\text { Area of drive cylinder(s) }}{\text { Area of fluid piston(s) }}
$$

Example: A Posiratio machine with a 4" diameter air cylinder drive with a 30 mm diameter "A" pump and a 20 mm diameter "B" pump.

$$
\begin{aligned}
& \text { Area of } 4 " \text { air cylinder }=81.07 \mathrm{~cm}^{2} \\
& \text { Area of } 30 \mathrm{~mm} \text { piston }=7.07 \mathrm{~cm}^{2} \\
& \text { Area of } 20 \mathrm{~mm} \text { piston }=3.14 \mathrm{~cm}^{2} \\
& \text { Power Factor }=\frac{81.07 \mathrm{~cm}^{2}}{7.07 \mathrm{~cm}^{2}+3.14 \mathrm{~cm}^{2}}
\end{aligned}
$$

Power Factor $=7.9: 1$
If 100 psi air pressure is applied to the 4 " air cylinder, 790 psi fluid outlet pressure can be obtained in a stalled condition. If 50 psi air pressure is applied, only 395 psi fluid outlet pressure can be obtained.

The following is to be used as a guide only as the actual flow rate is dependent on a wide variety of factors including hose size, mixer size, fitting restrictions, injection block or gun employed, thixotropic characteristic of the material, heat, and any other factor that affects flow. Generally, the higher the power factor, the lower the volume output.

## Power Factor "Rule Of Thumb" Chart

|  | Approximate Power |
| :---: | :---: |
| Viscosity in Centipoise | Factor Needed |
| 50 to 500 | 1:1 |
| 500 to 1,000 | 2:1 |
| 1,000 to 3,000 | 3:1 |
| 3,000 to 6,000 | $4: 1$ |
| 6,000 to 9,000 | 5:1 |
| 9,000 to 15,000 | 6:1 |
| 15,000 to 20,000 | 7:1 |
| 20,000 to 30,000 | 8:1 |
| 30,000 to 40,000 | 9:1 |
| 40,000 to 60,000 | 10:1 |
| 60,000 to 75,000 | 11:1 |
| 75,000 to 90,000 | 12:1 |
| 90,000 to 120,000 | 13:1 |
| 120,000 to 200,000 | 14:1 |
| 200,000 to 1,000,000 | 15:1 to 20:1 |
| over 1,000,000 | Consult Factory |

## Air Cylinder Consumption

This chart is used for calculating the air consumption of a cylinder(s) on a reciprocating application to determine the total volume of air required to meet a given cycle rate. The values shown are for 100 psi which is the maximum pressure we recommend for operating the cylinder(s).

| $\begin{array}{c}\text { CYLINDER } \\ \text { SIZE (I.D.) }\end{array}$ | $\begin{array}{c}\text { AREA OF CYLINDER } \\ \text { (sq. in) }\end{array}$ |  | $\begin{array}{c}\text { SCFM } \\ \text { (sq. cm) }\end{array}$ |
| :---: | :---: | :---: | :---: |
| (per 1" stroke |  |  |  |
| at 100 psi) |  |  |  |$]$

## Example:

Total air consumption of a 6 " diameter air cylinder with a 6 " stroke operating at 10 cycles per minute (20 strokes per minute):
6" Stroke x 0.128 SCFM/l" Stroke $=0.768$ SCFM
0.768 SCFM/Stroke x 20 Strokes/Min = 15.36 SCFM

## Note:

To calculate total cylinder air consumption, both the forward and retract length of stroke need to be considered. Thus a 6 " stroke air cylinder can travel a full 6 " in each direction for a total of 12 " of travel using 1.536 SCFM of air per cycle.

To determine actual power factor requirements for a specific flow rate, tests can be run at Graco's application laboratory with the specific material to be dispensed.

## Application Data and Calculations

## Volumetric Content and Ratio of Standard Material Hoses

Includes nylon high-pressure and PTFE-lined, stainless steel braided hose. The volumetric content of each size hose per lineal foot is provided in columns 3 and 4 in cubic inches (in ${ }^{3}$ ) and cubic centimeters (cc's). To determine the volumetric ratio of two equal length hoses, first locate one hose size in row 1 and the other hose size in column 1. At the point on the chart where these two hose sizes intersect, the volumetric ratio is given. (e.g. If " $A$ " hose is 0.75 " I.D. and the " B " hose is 0.375 " I.D., the volumetric ratio between the two is $4.00: 1$ if they are of equal length.)

| HOSE <br> SIZE | TYPE OF <br> HOSE | VOLUMETRIC <br> CONTENT |  | $0.125^{\prime \prime}$ | $0.187^{\prime \prime}$ | $0.250^{\prime \prime}$ |
| :--- | :--- | :---: | ---: | :---: | :---: | :---: |
|  |  | $\mathrm{in}^{3} / \mathrm{ft}$ | cc's/ft |  |  |  |
| $0.125^{\prime \prime}(3 / 16)$ | PTFE/SS | 0.147 | 2.414 | 1 | 2.24 | 4.00 |
| $0.187^{\prime \prime}(3 / 16)$ | Nylon or <br> PTFE/SS | 0.330 | 5.402 |  | 1 | 1.79 |
| 0.250 " $(1 / 4)$ | Nylon | 0.589 | 9.655 |  |  | 1 |
| $0.312^{\prime \prime}(3 / 8)$ | PTFE/SS | 0.917 | 15.037 |  |  |  |
| $0.375^{\prime \prime}(3 / 8)$ | Nylon | 1.325 | 21.723 |  |  |  |
| $0.406^{\prime \prime}(1 / 2)$ | PTFE/SS | 1.554 | 25.463 |  |  |  |
| 0.500 " $(1 / 2)$ | Nylon | 2.356 | 38.618 |  |  |  |
| $0.625^{\prime \prime}(3 / 4)$ | PTFE/SS | 3.682 | 60.341 |  |  |  |
| $0.750^{\prime \prime}(3 / 4)$ | Nylon | 5.301 | 86.891 |  |  |  |
| $0.875^{\prime \prime}(1)$ | PTFE/SS | 7.216 | 118.268 |  |  |  |
| $1.000^{\prime \prime}$ | Nylon | 9.425 | 154.472 |  |  |  |

Note: The actual I.D.s of most PTFE/SS hoses is smaller than the hose designation. (eg. 1/2" PTFE/SS hose has an I.D. of 0.406 ".)

Generally, when designing a two-component meter, mix and dispense system, the volumetric ratios of the hoses should be close to the actual ratio of the resin system being dispensed assuming the " $A$ " and " $B$ " materials are of equal or close viscosity. When there are wide differences in viscosity of the two materials, then flow rate and pressure drop have to be taken into consideration and the hoses sized accordingly.

| $0.312^{\prime \prime}$ | $0.375^{\prime \prime}$ | $0.406^{\prime \prime}$ | $0.500^{\prime \prime}$ | $0.625^{\prime \prime}$ | $0.750^{\prime \prime}$ | $0.875^{\prime \prime}$ | $1.000^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 6.23 | 9.00 | 10.55 | 16.00 | 25.00 | 36.00 | 49.00 | 64.00 |
| 2.78 | 4.02 | 4.71 | 7.15 | 11.17 | 16.08 | 21.89 | 28.60 |
| 1.56 | 2.25 | 2.64 | 4.00 | 6.25 | 9.00 | 12.25 | 16.00 |
| 1 | 1.44 | 1.69 | 2.57 | 4.01 | 5.78 | 7.87 | 10.27 |
|  | 1 | 1.17 | 1.78 | 2.78 | 4.00 | 5.44 | 7.11 |
|  |  | 1 | 1.52 | 2.37 | 3.41 | 4.64 | 6.07 |
|  |  |  | 1 | 1.56 | 2.25 | 3.06 | 4.00 |
|  |  |  |  | 1 | 1.44 | 1.96 | 2.56 |
|  |  |  |  |  | 1 | 1.36 | 1.78 |
|  |  |  |  |  |  | 1 | 1.31 |
|  |  |  |  |  |  |  | 1 |



## Application Data and Calculations

## Volume of Dots



Dot Size

|  |  |  | Dot Size |
| :---: | :---: | :---: | :---: |
|  | V cc | 0.00003 | - |
| D | Inch | 0.02 |  |
|  | mm | 0.51 |  |
|  | V cc | 0.0001 | - |
| D | Inch | 0.03 |  |
|  | mm | 0.76 |  |
| D | V cc | 0.0003 | - |
|  | Inch | 0.04 |  |
|  | mm | 1.02 |  |
| D | V cc | 0.0005 | - |
|  | Inch | 0.05 |  |
|  | mm | 1.27 |  |
| D | V cc | 0.001 | $\bullet$ |
|  | Inch | 0.07 |  |
|  | mm | 1.78 |  |
| D | V cc | 0.003 | - |
|  | Inch | 0.09 |  |
|  | mm | 2.29 |  |
| D | V cc | 0.006 | - |
|  | Inch | 0.11 |  |
|  | mm | 2.79 |  |
| D | V cc | 0.009 | $\bigcirc$ |
|  | Inch | 0.13 |  |
|  | mm | 3.30 |  |
| D | V cc | 0.014 |  |
|  | Inch | 0.15 |  |
|  | mm | 3.81 |  |
|  | V cc | 0.021 |  |
| D | Inch | 0.17 |  |
|  | mm | 4.31 |  |



## Application Data and Calculations

## Volume of Bead



Volume (cu.in) $=\frac{\pi D^{2}(\text { in })}{4} \times L$ (in)
Volume $(\mathrm{cc})=\frac{\pi \mathrm{D}^{2}(\mathrm{~cm})}{4} \times \mathrm{L}(\mathrm{cm})$

Bead Size $(D)=0.0295 " / 0.75 \mathrm{~mm}$
Volume (cu. in.) $=0.0007 \times$ Length (in)
Volume (cc's) $=0.0112 \times$ Length (in)

Bead Size $(\mathrm{D})=0.0396 " / 1.000 \mathrm{~mm}$
Volume (cu. in.) $=0.0012 \times$ Length (in)
Volume (cc's) $=0.0199 \times$ Length (in)

Bead Size (D) $=0.0625^{\prime \prime}\left(1 / 16^{\prime \prime}\right) / 1.588 \mathrm{~mm}$
Volume (cu. in.) $=0.0031 \times$ Length (in)
Volume (cc's) $=0.0500 \times$ Length (in)

Bead Size (D) = 0.0937" (3/32") / 2.381 mm
Volume (cu. in.) $=0.0069 \times$ Length (in)
Volume (cc's) $=0.1131 \times$ Length (in)

Bead Size (D) $=0.125^{\prime \prime}\left(1 / 8^{\prime \prime}\right) / 3.175 \mathrm{~mm}$
Volume (cu. in.) $=0.0123 \times$ Length (in)
Volume (cc's) $=0.2011 \times$ Length (in)

Bead Size (D) $=0.1875$ " $(3 / 16$ ") $/ 4.763 \mathrm{~mm}$
Volume (cu. in.) $=0.0276 \times$ Length (in)
Volume (cc's) $=0.4525 \times$ Length (in)

Bead Size (D) = 0.250" (1/4") / 6.350 mm
Volume (cu. in.) $=0.0491 \times$ Length (in)
Volume (cc's) $=0.8044 \times$ Length (in)

Bead Size $(\mathrm{D})=0.3125^{\prime \prime}(5 / 16$ ") $/ 7.938 \mathrm{~mm}$
Volume (cu. in.) $=0.0767 \times$ Length (in) Volume (cc's) $=1.2569 \times$ Length (in)

Bead Size (D) = 0.375" (3/8") / 9.525 mm
Volume (cu. in.) $=0.1104 \times$ Length (in) Volume (cc's) $=1.8099 \times$ Length (in)


Bead Size (D) = 0.500" (1/2") / 12.700 mm
Volume (cu. in.) $=0.1963 \times$ Length (in) Volume (cc's) $=3.2176 \times$ Length (in)

Bead Size (D) = 0.625" (5/8") / 15.875 mm
Volume (cu. in.) $=0.3068 \times$ Length (in) Volume (cc's) $=5.0275 \times$ Length (in)


Bead Size $(D)=0.750$ " $\left(3 / 4^{\prime \prime}\right) / 19.050 \mathrm{~mm}$
Volume (cu. in.) $=0.4418 \times$ Length (in)
Volume (cc's) $=7.2396 \times$ Length (in)

## Application Data and Calculations

## Ratio of "A" to "B"

The mix ratio of a two (2) component thermoset resin system is generally given as either volume ratio or weight ratio. Since all meter, mix and dispense machines use volumetric displacement, it is important to understand the difference between these and how to convert from one to the other. The following formula can be used when the density or specific gravity of both the " A " and " B " components are known and only one of the ratios:

$$
\frac{\text { Weight Ratio }}{\text { Volume Ratio }}=\frac{\text { Specific Gravity }}{\text { Specific Gravity }}
$$

## Example:

A material has a weight ratio of $10: 1$, the "A" material has a specific gravity of 1.20 and the " $B$ " material has a specific gravity of 1.00. To calculate volume ratio:

$$
\begin{aligned}
& \frac{10: 1}{\text { Volume Ratio }}=\frac{1.20}{1.00} \\
& \text { Volume Ratio }=\frac{10}{1.20} \\
& \text { Volume Ratio }=8.33: 1
\end{aligned}
$$

Typically the wider the ratio of "A" to "B" (e.g. 20:1, 50:1, 100:1), the more critical the design of the meter, mix and dispense machine. Not only do the metering pumps require more precise volumetric displacement but the selection of the injection block or dispense gun and mixer is equally as important. Closer mix ratios (eg. 1:1, 2:1, 5:1) will normally result in the simplest machine design.

## Posiload Pump Sizing for Specific Ratios

To calculate the size of either the "A" or "B" pump for a fixed-ratio meter, mix and dispense machine, when the volume ratio is known along with one of the pump sizes, the following formulas can be used:

$$
\begin{gathered}
A=\sqrt{B^{2} \times V R} \\
\text { or } \\
B=\sqrt{\frac{A^{2}}{V R}}
\end{gathered}
$$

## Examples:

1. What size catalyst pump (B) is required for a volume ratio of $10: 1$ with a 40 mm resin pump (A)?

$$
\begin{aligned}
& B=\sqrt{\frac{A^{2}}{V R}} \\
& B=\sqrt{\frac{40^{2}}{10}}=\sqrt{160} \\
& B=12.649 \mathrm{~mm}
\end{aligned}
$$

2. What size resin pump (A) is required for a volume ratio of 2.5:1 with a 15 mm catalyst pump (B)?

$$
\begin{aligned}
& A=\sqrt{B^{2} \times V R} \\
& A=\sqrt{15^{2} \times 2.5}=\sqrt{562.5} \\
& A=\mathbf{2 3 . 7 1 7} \mathbf{~ m m}
\end{aligned}
$$

# Application Data and Calculations 

## Shot Capability of Standard Posiload Piston Pumps

| Pump Size* | Maximum Shot (100\%) | Minimum Shot (15\%) |
| :---: | :---: | :---: |
| 10 mm | 5.98 cc's | 0.90 cc 's |
| 15 mm | 13.47 cc's | 2.02 cc's |
| 20 mm | 23.94 cc's | 3.59 cc's |
| 25 mm | 37.40 cc's | 5.61 cc's |
| 30 mm | 53.86 cc's | 8.08 cc's |
| 35 mm | 73.31 cc's | 11.00 cc's |
| 40 mm | 95.75 cc's | 14.36 cc's |
| 45 mm | 121.19 cc's | 18.18 cc's |
| 50 mm | 149.62 cc's | 22.44 cc's |
| 55 mm | 181.04 cc's | 27.16 cc's |
| 60 mm | 215.45 cc's | 32.32 cc's |
| 70 mm | 293.25 cc's | 43.99 cc's |
| 80 mm | 383.02 cc's | 57.45 cc's |
| 90 mm | 484.76 cc's | 72.71 cc's |
| 100 mm | 598.47 cc's | 89.77 cc's |

*Special size pumps from 10 mm through 100 mm can be machined for specific shot requirements.


## Gear Pump Selector Chart

| Pump Outlet |  | Ratio Range |  |  | Flow rate at <br> Min ratio |  | Flow rate at <br> Mid ratio |  | Flow <br> Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A <br> cc/rev | B <br> cc/rev | RATIO <br> MAX | RATIO <br> MID | RATIO <br> MIN | MIN <br> cc/sec | MAX <br> cc/sec | MIN <br> cc/sec | MAX <br> cc/sec | MAX <br> cc/sec |
| 20 | 20 | 5.00 | 3.00 | 1.00 | 8 | 40 | 16 | 26 | 24 |
| 20 | 12 | 8.33 | 5.00 | 1.67 | 6.4 | 32 | 14.4 | 24 | 22.4 |
| 20 | 6 | 16.67 | 10.00 | 3.33 | 5.2 | 26 | 13.2 | 22 | 21.2 |
| 20 | 3 | 33.33 | 20.00 | 6.67 | 4.6 | 23 | 12.6 | 21 | 20.6 |
| 12 | 12 | 5.00 | 3.00 | 1.00 | 4.8 | 24 | 9.6 | 16 | 14.4 |
| 12 | 6 | 10.00 | 6.00 | 2.00 | 3.6 | 18 | 8.4 | 14 | 13.2 |
| 12 | 3 | 20.00 | 12.00 | 4.00 | 3 | 15 | 7.8 | 13 | 12.6 |
| 6 | 6 | 5.00 | 3.00 | 1.00 | 2.4 | 12 | 4.8 | 8 | 7.2 |
| 6 | 3 | 10.00 | 6.00 | 2.00 | 1.8 | 9 | 4.2 | 7 | 6.6 |
| 3 | 3 | 5.00 | 3.00 | 1.00 | 1.2 | 6 | 2.4 | 4 | 3.6 |

Flow Rate vs Ratio, 20/6 cc Pumps


Flow Rate vs Ratio, 20/20 cc Pumps


## Application Data and Calculations

## Conversion Chart

Production Throughput Planner

|  | Pieces per Minute | Pieces per Hour | Pieces per Day |
| :---: | :---: | :---: | :---: |
|  |  |  | (8 Hours) |
| Seconds/Piece |  |  |  |
| 150 Sec . | 0.4 | 24 | 192 |
| 60 Sec . | 1 | 60 | 480 |
| 30 Sec . | 2 | 120 | 960 |
| 12 Sec . | 5 | 300 | 2,400 |
| 10 Sec. | 6 | 360 | 2,888 |
| 6 Sec . | 10 | 600 | 4800 |
| 3 Sec. | 20 | 1,200 | 9,600 |
| 2 Sec . | 30 | 1,800 | 14,400 |
| 1.5 Sec . | 40 | 2,400 | 19,200 |
| 1.2 Sec. | 50 | 3,000 | 24,000 |
| 1 Sec . | 60 | 3,600 | 28,800 |
| 0.857 Sec. | 70 | 4,200 | 33,600 |
| 0.750 Sec . | 80 | 4,800 | 38,400 |
| 0.666 Sec . | 90 | 5,400 | 43,200 |
| 0.600 Sec . | 100 | 6,000 | 48,000 |
| 0.480 Sec. | 125 | 7,500 | 60,000 |
| 0.400 Sec . | 150 | 9,000 | 72,000 |
| 0.342 Sec . | 175 | 10,500 | 84,000 |
| 0.300 Sec. | 200 | 12,000 | 96,000 |


| Pieces per <br> Week | Pieces per <br> Month | Pieces per <br> Year |
| :---: | :---: | :---: |
| (40 Hours) | (21 Days) | (50 Weeks) |
|  |  |  |
| 960 | 4,000 | 48,000 |
| 2,400 | 10,000 | 120,000 |
| 4,800 | 20,000 | 240,000 |
| 12,000 | 50,000 | 600,000 |
| 14,400 | 60,000 | 720,000 |
| 24,000 | 100,000 | $1,200,000$ |
| 48,000 | 200,000 | $2,400,000$ |
| 72,000 | 300,000 | $3,600,000$ |
| 96,000 | 400,000 | $4,800,000$ |
| 120,000 | 500,000 | $6,000,000$ |
| 144,000 | 600,000 | $7,200,000$ |
| 168,000 | 700,000 | $8,400,000$ |
| 192,000 | 800,000 | $9,600,000$ |
| 216,000 | 900,000 | $10,800,000$ |
| 240,000 | $1,000,000$ | $12,000,000$ |
| 300,000 | $1,250,000$ | $15,000,000$ |
| 360,000 | $1,500,000$ | $18,000,000$ |
| 420,000 | $1,750,000$ | $21,000,000$ |
| 480,000 | $2,000,000$ | $24,000,000$ |

*Based on 100\% Efficiency

# Application Data and Calculations 

## Process Capability CP \& CPK

Process capability is the ability of a given process to meet (customer's) expectations. It is measured by comparing the spread (variability) and centering of the process to the upper and lower specifications.

Tolerance - The difference between the upper and lower specifications

Variability (Spread) - Six times the process standard deviation ( $\boldsymbol{\square}$ )

Cp - Measure of potential process capability
Cpk - Measure of actual process capability
$C p=\frac{\text { USL }- \text { LSK }}{6 \square}$
Cpk $=\min \left\{\frac{X-L S L}{3 \square}, \frac{\text { USL }-X}{3 \square}\right\}$

X - Process average
USL - Upper Specification Limit
LSL - Lower Specification Limit

-     - Process Standard Deviation
$\square=\frac{R}{d_{2}} \quad \square=\frac{S}{C_{4}}$

R \& S - average subgroup ranges and standard deviation $d_{2} \& C_{4}$ - constant values based on subgroup sample sizes


Cp<1: The six-sigma process spread is greater than the tolerance.
$C p=1$ : The six-sigma process spread is equal to the tolerance.

Cp>1: The six-sigma process spread fits inside the tolerance.


## Results:

Cpk < 1 - Defective parts will be made, and the process is not in control.

Cpk $=1-$ Minimum of $3 \%$ defectives will be made.
Cpk $\geq 1.33$ - The condition for the process to be considered in control.

## Application Data and Calculations

## Common Industry Abbreviations and Symbols

| "A" | typically the high volume or resin component | kw | kilowatt |
| :---: | :---: | :---: | :---: |
| abs | absolute | kwhr | kilowatt hour |
| amb | ambient | lbs | pounds |
| ASTM | American Society for Testing Materials | $\mathrm{lbs} / \mathrm{cu} \mathrm{ft}$ | pounds per cubic foot |
| atm | atmosphere | M | meter |
| "B" | typically the low volume or catalyst component | mm | millimeter |
| BTU | British Thermal Unit | mPa s | Millipascal Second |
| ${ }^{\circ} \mathrm{C}$ | degrees Celsius or Centigrade | max | maximum |
| cc | cubic centimeter | min | minimum |
| cfm | cubic feet per minute | NEMA | National Electric Manufacturers Assoc. |
| cks | centistokes | NPS | National Std Pipe-Straight |
| cm | centimeter | NPT | National Std Pipe-Tapered |
| cps | centipoise | OD | outside diameter |
| Cu | cubic | OSHA | Occupational Safety and Health Adm |
| cu ft | cubic feet | Pas | Pascal Second |
| cu in | cubic inch | $\pi$ | (Pi) 3.1416 |
| deg | degrees | psi | pounds per square inch |
| ${ }^{\circ} \mathrm{F}$ | degrees Fahrenheit | psia | pounds per square inch absolute |
| FM | Factory Mutual | psig | pounds per square inch gauge |
| fpm | feet per minute | RIM | reaction injection molding |
| fps | feet per second | rpm | revolutions per minute |
| FRP | fiberglass reinforced plastic | RTM | resin transfer molding |
| ft | foot | RTV | room temperature vulcanizing |
| gal | gallons | scfm | standard cubic feet per minute |
| GPM | gallons per minute | SMC | Sheet Molding Compound |
| hg | mercury | sp gr | specific gravity |
| HP | horsepower | sq cm | square centimeter |
| hr | hour | sq ft | square foot |
| Hz | Hertz (cycles per second) | sq in | square inch |
| ID | inside diameter | SSU or SUS | Saybolt Universal Seconds |
| in | inch | std | standard |
| ISO | International Standards Organization | UHMW | ultra high molecular weight |
| JIC | Joint Industry Conference | UL | Underwriters Laboratory |
| kg | kilogram | vac | vacuum |
| km | kilometer | visc | viscosity |
|  |  | VR | volume ratio |
|  |  | WR | weight ratio |

# Application Glossary 

Bonding - Joining securely through the use of adhesives.
Cartridge Filling - Dispensing a given volume of material into a customer-selected package.
Coating - Covering with a layer, such as a paint or protective material.
Doming - Preserving and enhancing the appearance of nameplates, labels or decals by applying a clear "dome" over a preprinted graphic.
Filament Winding - Coil winding or coating.
Gasketing - Sealing or packing between matched parts to prevent the exchange of gas or fluid and protect against environmental conditions.
Laminating - Uniting several layers of material with a flexible urethane.
LIM (Liquid Injection Molding) - Involves the injection of liquid polyurethane systems into a mold. The components then polymerize within the mold.
LSR (Liquid Silicone Rubber) - Is a two-part catalyzed product particularly well suited for high-production products with tight dimensional tolerances.
Molding - Injecting or pouring a reactive plastic fluid into a hollow form or matrix.
Potting - To embed in a container within an insulating or protective material. Potting is often accomplished within an evacuated environment, called vacuum encapsulation. Pultrusion - Pulling glass fibers through a resin bath to make continuous profiles, pipes and other shapes.
Rapid Prototyping - Casting void-free parts for fast-curing polyurethanes for quick mold turnarounds.
RIM (Reaction Injection Molding) - Involves the injection of liquid polyurethane systems into a mold. The components then polymerize within the mold.
RTM (Resin Transfer Molding) - Is a closed mold process for molding fiberglass products. It does not require metal molds or high pressure mold closing systems. It is ideal for part volumes from 500 to 10,000 parts per year.
Robotics - Refers to equipment that works automatically or by remote control.
Scripting - Using three-dimensional automation to produce decorative fonts by dispensing a precise amount of material to give the lettering a raised effect.
Sealing - Closing or securing a part or assembly with a fluid-tight, air-tight adhesive.

## VARTM (Vacuum-Assisted Resin Transfer Molding) -

 Is a low-cost alternative to resin transfer molding (RTM). It features lower tooling costs, room temperature processing and ease of scalability.
## Automation Terms

Accuracy - Is the difference between the series of measurements empirically obtained and the theoretically expected position.

Repeatability - Is the degree of variation of the various measurements taken when the system is asked to move to a given point.

Resolution - Smallest attainable increment of positioning.
Nominal Life Expectancy - Is the accumulative linear meters of travel the motion manufacturer guarantees that the system will achieve or exceed before indications of fatigue are seen. Load and operating conditions can greatly vary the specification.

$$
\begin{aligned}
& L=\left(\frac{C}{P}\right)^{p} \times 1 \times 10^{5} m \\
& L_{h}=\frac{1666}{V}\left(\frac{C}{P}\right)^{p}
\end{aligned}
$$

$L[m]$ - nominal life expectancy in meters
$L_{h}[h]$ - nominal life expectancy in operating hours
$\mathrm{C}[\mathrm{N}]$ - dynamic load (provided by manufacturer)
$P[N]$ - dynamic equivalent load (actual load)
p - Life expectancy index: ball bearing linear guides: $p=3$ roller bearing linear guides: $p=10 / 3$
$v$ [ $\mathrm{m} / \mathrm{min}]$ - average travel speed

Founded in 1926, Graco is a world leader in fluid handling systems and components. Graco products move, measure, control, dispense and apply a wide range of fluids and viscous materials used in vehicle lubrication, commercial and industrial settings.

The company's success is based on its unwavering commitment to technical excellence, world-class manufacturing and unparalleled customer service. Working closely with qualified distributors, Graco offers systems, products and technology that set the quality standard in a wide range of fluid handling solutions. Graco provides equipment for spray finishing, protective coating, paint circulation, lubrication, and dispensing sealants and adhesives, along with power application equipment for the contractor industry. Graco's ongoing investment in fluid management and control will continue to provide innovative solutions to a diverse global market.

## MINNESOTA

Worldwide Headquarters Graco Inc.
88-11th Avenue N.E.
Minneapolis, MN 55413

SALES/ CANADA: (866) 967-4660
SERVICE DispenseRite Inc.
www.dispenserite.ca
Di

